

Overview of the 2023 Billion-Ton Report and summary of Roads to Removals BiCRS

Many authors March 6th, 2024

ORNL is managed by UT-Battelle LLC for the US Department of Energy

BT23 results indicate 0.7-1.7 billion tons biomass potential

2

National Laboratory

- Bioeconomy currently provides 340 million tons biomass (5 Quads or 5% total)
- Currently available resources can double biomass in nearterm
- Mature market induces another 440-800 million tons biomass depending on yield assumptions
- Emerging resources can supply another 250 million tons
- All estimates include sustainability constraints

Potential Bioenergy Resource and Sustainable Fuel Supply

WOAK KIDGE

National Laboratory

3

THE U.S. NATIONAL **BLUEPRINT FOR** TRANSPORTATION Sustainable Aviation Fuel DECARBONIZATION A Joint Strategy to Transform Transportation **SAF Grand Challenge** Roadmap Flight Plan for Sustainable Aviation Fuel USDA SEPA

^a The Base case and Expanded scenario bars above are reported on a GGE basis

* Assumes a conversion rate of 55 gallons per ton

2023 Billion-Ton Report (BT23) is 4th in a series

CAK RIDGE

- To inform research, development, and deployment strategies.
- Update to latest economic conditions
- Better clarity in terms of
 - Production capacity by market maturity
 - Level of resource utilization
- New resources (e.g. oilseeds, macroalgae)

- Not targets
- Not predictions
- Policy agnostic
- End-use agnostic

Billion-Ton 2023 Collaborators

Fifty-four contributors

BT23 considers current, available, and future resources

US currently uses ~350 million tons of biomass for fuel & power

Draft in review, do no cite

2023 Billion-Ton Report

Waste & byproduct resources can provide ~200 million tons

Draft in review, do no cite

8

2023 Billion-Ton Report

Timberland is modeled with conventional forest products

Resource	Collaboration	Analysis	Region	Inputs
Logging residues	U Lest	Forest Sustainability and Economic Assessment Model (ForSEAM)	Contermino us US	 Inventory from USFS Forest Inventory and Analysis (FIA) data
		Subregional Timber Supply Model (SRTS)	SE US	 Conventional demands (sawtimber and
Forest thinnings	ULSS WEITER	Bioregional Inventory Originated Simulation Under Management (BioSUM)	Western fire-prone forests	 pulpwood) from Forest Resource Outlook Model Growth and yield data
Plantations	Outputs: County- level supply curves	Logging residues Small-diameter trees Forest proc	essing wastes Other forest waste	• Operational costs

\$10-

0

5

6

3 3

3

3

Dry short tons (millions)

So

55

Map excludes currently used resources. Purple colors indicate sufficient supply density to support >750,000 tons per year within a 50-mile radius. 100 - 500 500 - 1,000 ≥1,000 Report No data

Dry tons per SQMI None

< 5

5 - 100

Timberland resources can provide ~50 million tons

Agriculture is modeled with conventional crops

Resource

Switchgrass

Willow

CAK RIDGE

National Laboratory

11

Oil seeds NEW

Analysis:

Model: Policy Analysis System (POLYSYS)

Inputs:

Conventional (food, feed, fiber, export) demands from 2023 USDA Baseline Projection

Crop yields (tons/acre/year) from SunGrant Regional Feedstock Partnership and PRISM model

Updated crop production budgets 30-meter cropland resolution (2022 Cropland Data Layer)

Outputs:

2023 Billion-Ton Report

Agricultural resources can provide ~200-800 million tons

Energy crops results on cropland are outside the corn belt

Commodity price impacts: Soy

Commodity price impacts: Soy

Commodity price impacts: Soy

Commodity price impacts: Wheat

Commodity price impacts: Corn

Energy crops could have nominal impacts on food production

Business as usual, 2041

Modeled impacts of energy crop scenarios on US commodity crop production, food prices, and farm revenues. Future yield improvements simulated in the MM High scenario mitigate impacts on conventional production and increase biomass production.

Energy crops can impact commodity crop production and rural incomes

MM Low: No future yield improvement; 325 million tons per year

150% — MM Medium: 1% per year yield improvement; 400 million tons per year MM High: 3% per year yield improvement: 640 million tons per year

Business as usual, 2041 Mature-market Low Mature-market Med Mature-market High

Modeled impacts of energy crop scenarios on US commodity crop production, food prices, and farm revenues. Future yield improvements simulated in the MM High scenario mitigate impacts on conventional production and increase biomass production.

Farm net returns increase \$17-\$27 Billion per year

Uncertainties

Mature-market medium

Potential biomass depends on price (MMH+Emerging scenario)

ROADS TO REMOVAL

Biomass Carbon Removal and Storage (BiCRS)

Sarah Baker

Wenqin Li, Alvina Aui, Allegra Mayer, Kim Mayfield, Hannah Goldstein, Corinne Scown, Whitney Kirkendall, Joe Sagues, Matthew Langholtz, Chad Hellwinckel, Ingrid Busch, Mark Wright, Jerome Dumortier, Phil Robertson, Bruno Basso, Sinead Crotty, Jennifer Pett-Ridge

Lawrence Livermore National Laboratory

March 2024

This presentation does not contain any proprietary, confidential, or otherwise restricted information

BOTH Decarbonization AND CO2 removal are needed

CAK RIDGE

Five carbon removal strategies

26

National Laboratory

Biomass Carbon Removal and Storage (BiCRS):

BiCRS* can be customized to prioritize essential products OR to maximize carbon removal

*BiCRS = Biomass Carbon Removal and Storage

AK RIDGE

²⁰²³ Billion-Ion Report

BT23 Emerging Scenario

Data portal available March 15th 2024: https://bioenergykdf.ornl.gov/bt23-data-portal

Thank you Matt Langholtz langholtzmh@ornl.gov

ZUZS BIIIION-TON REPORT

Emerging resources can provide 250+ million tons in future

Microalgae

Macroalgae

Dry short tons (millions) up to \$800

Wicroalgae supply curve based on weighted average cost of individual sites by county National Laboratory

Extended Presentation: Methods & Interpretation

Notable changes

• Data updates

- 2023 USDA Baseline Projection for conventional food crop demands
- Projected forest products demands (e.g. paper, lumber) from FOrest Resource Outlook Model (FOROM) 2023
- Costs (e.g. crop budgets and prices) to 2022 dollars
- Additions
 - Intermediate (i.e. off-season) oilseed cover crops (e.g. pennycress)
 - Macroalgae (i.e. seaweed)
 - Sensitivity analysis to relaxing sustainability constraints
- Key interpretations
 - Resource availability is contingent upon market maturity
 - Results show sustainable commercial production capacity, rather than maximum production potential
 - Reported availabilities are less than in-field quantities (e.g. ~1/2 of wastes, ~1/3 of ag residues, <1% of timberland biomass)
 - Deviation from modeled constraints results in more biomass production

Base-case comparison with BT16

Currently Used for Energy and Coproducts

Differences in Currently Used for Energy (BT23 vs BT16)

2023 Billion-Ton Report

Forestland Resources

BT23 general approach for modeling sustainability

Start with total resource

Account for competing demands (food, feed, fiber, exports, conventional forest products, reducing the amount bioenergy) Reducing for environmental constraints (wind erosion, water erosion, sustained yield, soil organic carbon) Deviation from these constraints would result in more supply and possibly undesirable effects

Agricultural and Forestry resources modeled as free market rather than pre-determined Price impacts on conventional markets are quantified Modeled food price increase up to 0.7% Cropland net revenues up ~25%

Guardrails (e.g., BMPs) may be needed to avoid unsustainable production

Modeling limitations

- Ag and forestry: Sustainability constraints
- Sustainability analysis

Timberlands constraints for ForSEAM

Biomass from fire reduction treatments with USFS

- National Wildfire Crisis Strategy: Enhance fire resistance of 50 million ac.
- Biomass from forest fuel reductions
- ~16 million acres of forest/wildland
- High cost, with externality benefits

Agricultural Land Resources

Constraints: Agricultural lands

- Agricultural residues
 - Revised Universal Soil Loss Equation (RUSL2)
 - Wind Erosion Equation (WEQ)
 - Operational efficiency increasing with time (50% to 90%)
 - Result: ~1/3 of ag residues available
- Energy crops
 - Solve for food, feed, fiber, and exports with added biomass demand
 - Irrigated cropland or pasture excluded
 - No transition of non-agricultural lands to energy crops

Agriculture land resource scenario assumptions

Mature-market scenarios	Assumptions	
Near-term	Near team (simulated as 7 years after 2023)	Only crop residues (corn, wheat, sorghum, barley, and oat) No harvest technology improvements
Low	Mature-market (simulated as 18 years after 2023) No dedicated biomass crop yield improvements	Conventional crop yield improvements assume USDA baseline No harvest technology improvements
Medium	Mature-market (simulated as 18 years after 2023) 1% per year dedicated biomass yield improvements	Conventional crop yield improvements assume USDA baseline Harvest technology improves from 50% to 90% efficiency
High	Mature-market (simulated as 18 years after 2023) 3% per year dedicated biomass yield improvements	Conventional crop yields improve 1.5 times the USDA trend Harvest technology improves from 50% to 90% efficiency

Farm net returns increase over the baseline

Impact of R&D on yields

*Example of switchgrass yield from Crittenden County, KY; 2009 High-Yield Scenario Workshop Series Report

Assumptions matter

Yield assumptions

Modeling and Analysis

CAK RIDGE National Laboratory

47

Biofpr

The impact of alternative land and yield assumptions in herbaceous biomass supply modeling: one-sizefits-all resource assessment?

Laurence Eaton, Matthew Langholtz, and Maggie Davis, Oak Ridge National Laboratory, Environmental Sciences Division, Oak Ridge, TN, USA

Received December 19, 2017; revised October 2, 2018; accepted October 2, 2018 View online at Wiley Online Library (wileyonlinelibrary.com): DOI: 10.1002/bbb.1946; Biofuels, Bioprod. Bioref. (2018)

Abstract. The Billion-ton Reports series has addressed the technical economic potential of supplying additional biomass from farmland and forests.¹⁻³ Underlying each of the reports and supporting scenarios is a series of assumptions that drive the modeled output. The assumptions have developed over time with the support of technical experts from industry, academia, and government,⁴ Energy crops have not yet reached commodity scale, and only exist in commercial production in a limited number

Market assumptions

Original Article

Biofpr Supply analysis of preferential market incentive for energy crops

Oluwafemi Oyedejio, Matthew Langholtzo, Environmental Science Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA

Chad Hellwinckel, Department of Agricultural Economics, University of Tennessee, Knoxville, TN, LISA

Erin Webb[©], Environmental Science Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA

Received July 9 2020; Revised December 8 2020; Accepted December 11 2020; View online at Wiley Online Library (wileyonlinelibrary.com); DOI: 10.1002/bbb.2184; Biofuels, Bioprod. Bioref. (2021)

Abstract: This analysis explores the valuation of feedstock quality attributes of switchgrass and miscanthus – two energy crops poised for future expansion – and compares the relative economic availability of these two crops under two scenarios; (i) uniform price assumptions (i.e., no incentive for quality), and (ii) a scenario of a price premium based on convertibility (i.e., an incentive for quality). Given data on cellulose content, hemicellulose content, and their relative convertibility, miscanthus is expected to be 11% more efficient at conversion to biofuels than switchgrass under the biochemical conversion route. Based on this scenario of improved conversion efficiency and associated profit, we simulate an 11% price premium for miscanthus over other feedstocks in a base-case scenario. By adding this price premium, supplies of miscanthus increase over the base case by about 4 million (44%), 94 million (64%) and 166 million (94%) tons in year 0, 10, and 20 after simulated contracts for production are

Sugar supply			Total supply			
Miscanthus	Switchgrass			Miscanthus		Switchgrass

Climate change

Emerging Resources

Microalgae

- 2022 Algae Harmonization Update
- Land screening model to identify sites
- Biomass Assessment Tool (BAT to identify yields and costs)

Technoeconomic

Assessment

Pre-Storage MBSP

Macroalgae

CAK RIDGE

50

Screening tool:

OceanReports A BOEM/NOAA PARTNERSHIP

MarineCadastre.gov

Biophysical Model:

Macroalgae Techno-Economic Model: DeAngelo et al. (2023)

Economic availability

Deployability characterization

Other potential attributes:

- Supply control
- Price
- Logistics
- Infrastructure
- Convertibility

SUPPLY ACCESSIBILITY

